Napkollektor, napenergia

Napkollektor

Alternatív Energiaforrások - Napenergia

Magyar Termék Nagydíj DIN certifikátum
napkollektor, napenergia Magyarul     solar collector in English    

Solarkollektor® - Péter Impex Kft

Magyarország 6000 Kecskemét
Alkony u. 29.

SOLARKOLLEKTOR®
Sík napkollektor
Péter Impex Kft
 
A sík napkollektor magyar fejlesztés, magyar gyártás.
Rendelkezik magyar és EU közösségi mintaoltalommal, TÜV Rheinland termékminősítéssel, DIN CERTCO tanusítvánnyal

 

A Nap, mint energiaforrás

Napkollektor

Mit tud az újonnan kifejlesztett napkollektor?

Napkollektor rendszerek

Napkollektor rendszerek általános felépítése

A napkollektoros rendszerek tartozékai

A légköri elektromosság elleni védelem

Kezelés és karbantartás

Napkollektor rendszerek méretezése

Napkollektor kapcsolási vázlatok

A felhasználó ha okosan dönt, mit nyer az új napkollektor termékkel?

Napkollektor rendszerek állami támogatása, napkollektor pályázat

 

 

Oldaltérkép

 

 

A napkollektoros rendszerek tartozékai

A napkollektor rendszerek általában az alábbi fő részekből állnak:

 

-       Napkollektorok, melyek elnyelik, és hővé alakítják a napsugárzás energiáját.

-       Tárolók, melyek a napkollektorokkal termelt hőt melegvíz formájában tárolják a napsütés-mentes időszakra.

-      Működtető, szabályozó, biztonsági, és ellenőrző berendezések, szerelvények. Ide tartozik a keringető szivattyú, az automatika, a tágulási tartály, a biztonsági szelep, visszacsapó szelep, a légtelenítő, a nyomásmérő, a hőmérő és egyéb szerelvények.

Vezérlő és szabályozó berendezések

A vezérlő és szabályozó berendezések a rendszer irányítására szolgálnak. Feladatuk pl. az, hogy a szivattyú bekapcsolásával megindítsák a hőhordozó közeg keringését akkor, amikor a napkollektorban lévő munkaközeg hőmérséklete nagyobb a tároló hőmérsékleténél, tehát a kollektorból a hasznos hő szállítható a tárolóba.

A szabályozási feladatokat a tárolók, és a kollektorok száma határozza meg. Alkalmazható egy, két, vagy három tárolós rendszer, egy vagy két napkollektormezővel. A tároló általában melegvíz tartály, fűtési vizet tároló puffertartály, vagy medencevízfűtés esetén maga a medence.

 

Néhány jellegzetes rendszer kapcsolási vázlata:

Egy kollektor mezős, egy tárolós rendszer

Egy kollektor mezős, két tárolós rendszer

Egy kollektor mezős, egy tárolós rendszer

Egy kollektor mezős, két tárolós rendszer

Egy kollektor mezős, három tárolós rendszer

Két kollektor mezős, egy tárolós rendszer

Egy kollektor mezős, három tárolós rendszer

Két kollektor mezős, egy tárolós rendszer

Napkollektor szerelőkeretek

A napkollektorokat az esetek többségében tetőszerkezetre kell felszerelni. Az alkalmazott rögzítő-elemeknek olyanoknak kell lenniük, hogy ellenálljanak a kültéri időjárás viszontagságainak és a rozsdásodásnak, karbantartást ne igényeljenek, biztonságos, beázást nem okozó felszerelést tegyenek lehetővé.

 

Fontos szempont az esztétika is, a napkollektorok és tartószerkezeteik nem ronthatják az épület külső látványát.

 

A napkollektorok felszereléséhez alumíniumból készült szerelőkeretek javasolunk, ezek kielégítik a fenti követelményeket. A keretek egységcsomagban kaphatók, méretre szabva, előfúrva, az összeszereléshez szükséges rozsdamentes acél kötőelemekkel együtt.

A keretek alkalmazásával a napkollektorok könnyen, gyorsan, különösebb szakismeret nélkül is felszerelhetőek.

Más-más szerelőkeret ajánlott a ferde ill. a lapos tetőre. A keretek kettő vagy három darab napkollektor felszereléséhez készülnek, ezek egymás mellé helyezésével 2-10 db-ig tetszőleges számú kollektor felszerelhető. A keretek egymás mellé sorolásához szintén alumíniumból készült összekötő elemeket kell alkalmazni.

 

Ferde-tetős szerelőkeretek az általánosan használt tetőfedő anyagok többségénél alkalmazhatók.

A keretek napkollektoronként 2 db ún. tetőkampóval, vagy tőcsavarral rögzíthetők a tetőszerkezethez, általában a szarufához. A tetőkampó - hasonlóan a hófogó kampókhoz - a tetőcserép, vagy egyéb elem alá tolható, és itt lecsavarozható.

Ferde-tetős szerelőkeret vázlat 1

Ferde-tetős szerelőkeret vázlat 2

Ferde-tetős szerelőkeret vázlat 3

 

Lapos-tetős szerelőkeretek alkalmazásával a napkollektorok bármilyen sík területen felszerelhetők. Ez lehet épületek lapostetője, vagy pl. talajszint az épület, esetleg medence mellett. Lapos-tetős keret alkalmazható a napkollektorok függőleges falra szereléséhez is.

A lapos-tetős szerelőkeretek dőlésszöge 45°. Ha a tető 20m-nél magasabb, akkor megerősített kivitelű keretet kell alkalmazni. A szerelőkeretek alkalmazásához ki kell képezni egy megfelelő vízszintes, síkfelületet. Ehhez a szerelőkeretek lecsavarozással vagy súlyterheléssel rögzíthetők.
 

Lapos-tetős szerelőkeret vázlat 1

Bádogozó készletek napkollektorok tetőbe integrálásához

Bádogozó készletekkel a napkollektorok a tetőhéjalás helyett, a tetőbe integrálva építhetők be. A bádogozó készletek hasonlóak a tetőablakoknál alkalmazott bádogozáshoz. Mivel a napkollektorok dobozszerkezete alumínium, javasoljuk a bádogozásnál is az alumínium, esetleg a horganyozott lemezt. A bádogozó készletek egységcsomagban kaphatók, a csomagok a bádog elemeken kívül tartalmaznak minden olyan segédeszközöket (csavarok, tömítő-szalagok, szegek, stb.), amik a szereléshez szükségesek.

A napkollektorok tetőbe integrálásához alkalmazott idomokat, lefogó bilincseket a szarufákra kell felcsavarozni, és ezekkel kell rögzíteni azokat, biztosítva a hőtágulási lehetőséget.

Külön bádogozó készlet kapható a napkollektorok egy, vagy egymás alatt két sorban történő beépítéséhez. Az alapbádogozó készlet a két szélső napkollektor, a bővítő készlet pedig a közbenső napkollektorok, beépítésére szolgál.

Napkollektor szerelési egység

A szoláris szerelési egység olyan előre gyártott, kompakt egység, ami tartalmazza a napkollektoros rendszerek működtetéséhez szükséges berendezések, szerelvények többségét. Alkalmazásával a szoláris kör szerelése lényegesen egyszerűbbé válik, és biztosított a szakszerű működtetés.

Tágulási tartály

Napkollektoros rendszerekben a tágulási tartály feladata hogy az üzemszerűen előforduló hőmérséklethatárok között lehetővé tegye a fagyálló hőhordozó közeg térfogatváltozását. Erre a célra zárt, gumimembrános tágulási tartályokat kell használni. Az ilyen tartályok térfogata rugalmas, gumimembránnal ketté van választva, a membrán (hártya) egyik oldalán a hőhordozó közeg, a másik oldalán gáz, általában levegő van. A tartály működési elve a levegő összenyomhatóságán alapul. Ha a napkollektoros rendszerben megnő a hőmérséklet, a hőhordozó közeg kitágul, a membránon keresztül összenyomja a tartályban lévő levegőt úgy, hogy a rendszer nyomása csak kis mértékben emelkedik.  

A tágulási tartály nyomás és térfogatváltozás viszonyainak alakulása (10. – 11. ábrák) a hőmérséklet-változás függvényében:

 

Nyomás és térfogat viszonyok a tágulási tartályban

Nyomás és térfogat viszonyok a tágulási tartályban

 

005006

A víz- és a hőhordozóközeg térfogatváltozása a hőmérséklet függvényében

 

A tágulási tartályt akkorára kell méretezni, hogy az ilyenkor megemelkedő nyomás ne haladja meg a rendszer megengedett legnagyobb nyomás értékét. A tartály helyes kiválasztása és beállítása elengedhetetlen feltétele a napkollektoros rendszer zavartalan üzemének. A tágulási tartály levegő-oldalának előnyomását a rendszer feltöltése előtt be kell állítani. Az előnyomás helyes értéke a rendszer hideg állapotban tervezett nyomásának 90%-a. Ekkor feltöltés után, hideg rendszer esetén a tartályban 10% folyadék van, ez elegendő az esetleges légtelenítési és szivárgási veszteségek pótlására.

 

Be kell tartani az alábbi előírásokat:  

 

·        A hőhordozó közeg forrását az üzemi nyomás növelésével lehet megakadályozni. Ezért napkollektoros rendszerekben a lakásfűtési rendszerekhez képest más üzemi nyomást kell alkalmazni. A napkollektorok alkalmazása esetén 2,5 bar nyomásra beállított biztonsági szelepet ajánlott beépíteni, és a rendszert hideg állapotban 1,5 bar nyomásra kell feltölteni.

·        A napkollektorok felső pontjára nem szabad automata-légtelenítőt elhelyezni. Ez ugyanis egyrészt forrás esetén a napkollektorokból kiengedi a gőzt, másrészt a magas hőmérséklet miatt tönkremegy.

·        A biztonsági szelep lefújó ágát egy fém kannába kell vezetni, hogy esetleges lefúvás esetén a fagyálló folyadék ne vesszen kárba.

Szoláris szerelési egység alkalmazása esetén a tágulási tartályokat 12-24 l-ig a szoláris egységen található konzolra kell csatlakoztatni. Ez a tartályok biztonságos, tartós rögzítését eredményezi. Ha nem alkalmaznak szoláris egységet, vagy a tágulási tartály lábon álló kivitelű, akkor a tartályt az alábbiak szerint kell beépíteni:

o     A tágulási tartály és a biztonsági szelep valamint a kollektorok közé nem szabad elzáró szerelvényt beépíteni.

o    A tágulási tartályt a rendszer hideg ágába kell beépíteni, függesztett kivitelben. A függesztett kivitel előnye, hogy feltöltéskor a tartály vízteréből a levegő el tud távozni, valamint magas rendszerhőmérséklet esetén a tágulási tartály nem melegszik fel.

o    Fontos! Az alkalmazott tágulási tartály megengedett legnagyobb nyomása a biztonsági szelep által meghatározott 2,5 bar, vagy magasabb kell, hogy legyen! Az általánosan alkalmazott fűtési tágulási tartályok többsége ennek a követelménynek nem felel meg. Alkalmazhatók a különleges szolár tartályok, vagy az ivóvíz rendszerekben használatos hidrofor tartályok, amennyiben a gumimembránt a fagyálló folyadék nem károsítja.

Melegvíztárolók

A használati-melegvíz készítő napkollektoros rendszerek egyik legfontosabb eleme a melegvíz tárolótartály, közismert nevén a bojler. A napkollektoros rendszerek optimális működése nagymértékben a tároló típusának, űrtartalmának helyes kiválasztásától függ.

Tárolót azért kell alkalmazni, mert a napsütés időtartama általában nem esik egybe a melegvízfogyasztás idejével. A napkollektorok csak napközben működnek, akkor is az időjárás szeszélyeitől függően, míg nagyobb melegvízfogyasztás pl. családi házakban általában este, és reggel van. Ezért a napsütés idején napkollektorokkal hasznosított energiát melegvíz formájában tárolni kell a fogyasztás idejére. A napkollektorok a napenergiát csak átalakítják, nem tárolják, űrtartalmuk szándékosan kicsi. A tárolást belső, temperált térben elhelyezett, hőszigetelt tároló tartályban kell megvalósítani.

A használati-melegvíz készítő napkollektoros rendszerekben használatos tárolók két lényeges jellemzőben térnek el az épületgépészetben általánosan használatos tárolóktól:

 

·        Űrtartalmuk nagyobb, felépítésük általában lábon álló, karcsú, magas tartály.

·        Tartalmaznak egy, vagy több belső hőcserélőt, esetleg elektromos fűtőpatront, így több, különböző energiahordozóval üzemelő hőtermelővel is fűthetők.

 

Belső hőcserélős tárolókat közvetett fűtésű tárolónak is nevezni. A közvetett jelző azt jelenti, hogy a hőtermelő berendezés (pl. kazán, napkollektor) a tárolón kívül helyezkedik el, és a tárolót a hőtermelőben felmelegített folyadék a beépített belső hőcserélőben, csőkígyóban áramoltatva fűti fel.

A tároló hőcserélő lehet rögzítetten behegesztett acél csőkígyó, vagy karimán keresztül beépíthető sima vagy bordáscsöves réz csőkígyó.

 

Napkollektoros rendszerekben alkalmazott tárolok felépítése 

Napkollektoros rendszerekben alkalmazott tárolok felépítése

 

Fontos, hogy a napkollektorok hőcserélője alul, míg a hagyományos hőtermelő hőcserélője felül helyezkedjen el. Így lehetővé válik, hogy a hideg- és a melegvíz sűrűségkülönbség folytán kialakuló rétegződése miatt a hagyományos hőtermelő (pl. kazán) csak az elvételhez közeli, felső tárolótérfogatot melegítse fel.

 

A melegvíztárolók anyaga

 

·        A melegvíztárolók tartályteste általában acéllemezből, hegesztett kivitelben készül. A normál szénacélból készült tárolók belső felületét valamilyen felületvédő bevonattal látják el. Ez általában zománc, amit vákuumtérben, folyékony állapotban visznek fel a tartály felületére, és magas hőmérsékleten ráégetnek. Léteznek egyéb, szintetikus bevonatok is, melyeket por alakban visznek fel, és szintén ráégetéssel rögzítenek.

 

·         A felületvédő bevonatok a rozsdától védik a tartálytestet. Tökéletes bevonat azonban nem létezik, abban kisebb hibák, hajszálrepedések mindig előfordulnak. A hibák helyén rozsda alakul ki, ennek megakadályozására a tárolókba ún. aktív anódot építenek be. Ez többnyire magnézium anyagú rúdanód. Az anód úgy akadályozza meg a rozsdásodást, hogy az acél tartálytest helyett ő maga rozsdásodik, így előbb-utóbb elfogy. Ezért nagyon fontos az anód időszakos ellenőrzése, szükség esetén cseréje. A tartályok kilyukadását az esetek többségében az anód hiánya okozza.

 

·         Magnézium anód helyett a bojlerek felületvédelmére használható ún. idegenáramú anód is. Ez a magnézium anóddal ellentétben nem fogy el, cserélni nem kell. Az idegenáramú anód egy vékony, pálcaszerű anódból és egy tápegységből áll, melyet az elektromos hálózathoz kell csatlakoztatni. A tápegységen általában zöld led jelzi a helyes üzemet, piros led pedig az üzemzavart.

 

Figyelem! Az anódok a tartálytestet védik a rozsdásodástól, a kilyukadástól. Az anód a vízkövesedéstől nem véd, azzal nincs összefüggésben. Kemény víz esetén külön vízlágyító, vízkőmentesítő berendezéssel kell védekezni a vízkövesedés ellen.

 

·        Melegvíztárolókat készítenek rozsdamentes acélból is. Ezek a tárolók felületvédelmet, anódos védelmet nem igényelnek. A rozsdamentes tárolók élettartama hosszú, különösebb karbantartást nem igényelnek, hátrányuk, hogy áruk lényegesen magasabb a szénacél tárolók áránál.

 

A tárolók hőszigetelése

 

Az alkalmazott melegvíztárolóknak megfelelő hőszigeteléssel kell rendelkezniük. Kisebb tárolók esetében (500 l-ig) a hőszigetelés általában a közvetlenül a tartálytestre habosított kemény PUR hab. Nagyobb tárolóknál a hőszigetelés általában külön szállított, a tartálytestre cipzárral rögzíthető rugalmas szivacslemez. A hőszigetelés külső burkolata kemény hab esetén lehet festett acéllemez vagy cipzározható műanyag, rugalmas hab esetén minden esetben műanyag, műbőr vagy vászonszerű anyag. A tárolók hőszigetelésének legkevesebb vastagsága 5 cm, de lehetőség szerint célszerű ennél vastagabb szigetelésű tárolót választani. A tartálygyártók a hőszigetelés jellemzésére a készenléti veszteséget adják meg. Ez kWh-ban adja meg a tároló 24 órás hővesztességét, általában 60°C-os vízhőmérséklet és 20°C-os külső hőmérséklet esetén.

 

A melegvíztárolók hővesztességének nagyobb részét sokszor nem a tartálytest vékony hőszigetelése, hanem a csatlakozó csonkok, és csővezetékek nem megfelelő hőszigetelése okozza. A napkollektoros rendszerekben alkalmazott tárolókon igen sok csonk található, ezek hővesztessége jelentős lehet. Ügyelni kell a csatlakozó csővezetékek nyomvonalára és hőszigetelésére is. A melegvíz, kisebb fajsúlya miatt fölfelé törekszik, ezért a tárolóból fölfelé irányuló csővezetékek szabad utat biztosítanak a csővezetéken belüli gravitációs áramlásnak. Természetesen a csővezetékeket teljes terjedelemben hőszigetelni kell.

 

A tárolók számottevő hővesztességét okozhatja a cirkulációs (visszaforgató) vezeték energiapazarló üzeme is. Visszaforgató csővezetéket azért építenek ki, hogy a csapokból azonnal melegvíz folyjon. Cserében a bojler vizét időnként szivattyúval áramoltatni kell, ez viszont hővesztességet jelent, tehát figyelni kell az optimális beállításra.

 

A cirkulációs veszteség csökkenthető az alábbiak figyelembevételével:

 

·        A visszaforgató vezetéket teljes terjedelmében hőszigetelni kell.

 

·        A visszaforgató szivattyút kapcsolóórával vezérelve, csak abban az időszakban kell üzemeltetni, amikor feltételezhetően melegvízfogyasztás van.

A kapcsolóóra mellett a visszaforgató szivattyút célszerű termosztáttal is vezérelve kikapcsolni, ha a visszaforgató vezeték visszatérő ágában megjelent a melegvíz.

 

·        Napkollektorokkal is fűtött tároló esetén a visszaforgató vezetéket a tároló középső, felső harmadába kell bekötni, mivel ha azt az alsó hidegvíz csonkba kötik vissza, akkor a visszaforgató szivattyú összekeveri a tartály vizét, így megszünteti a természetes rétegződést.

 

A melegvíztárolók mérete

 

A napkollektoros rendszerekben alkalmazott melegvíztárolók optimális térfogatát elsősorban a napi melegvízfogyasztás mennyisége határozza meg. A napenergia-hasznosító rendszer akkor működik megfelelően, ha napsütés esetén a napkollektorokkal napközben megtermelt, és a bojlerben eltárolt melegvíz elegendő a következő napi napsütés időszakáig. Csak így lehet elérni azt, hogy nyáron a napkollektorok közel 100%-ban előállítsák a melegvíz szükségletet, és a hagyományos hőtermelő csak borultabb napokon kapcsoljon be. A tároló optimális méretét befolyásolja még a napkollektorfelület nagysága, és a melegvíz fogyasztás jellege.

 

A melegvíztárolók üzemi körülményei

 

A melegvíztároló beépítése előtt meg kell győződni arról, hogy a tároló megengedett csúcsértékű üzemi nyomása és hőmérséklete magasabb az előforduló legnagyobb értékeknél. Ha a vízhálózat nyomása akár időszakosan is meghaladhatja a tároló megengedett nyomását, akkor nyomáscsökkentőt kell beépíteni. A tárolót fűtő hőtermelők csúcsértékű hőmérsékletét úgy kell beállítani, hogy a tároló vizét a megengedett értéknél magasabbra ne fűthessék.

 

A hagyományos hőtermelővel a tároló hőmérsékletét célszerű 45-50°C-on tartani. Ennél magasabb hőmérséklet esetén megnőnek a hővesztességek, és főleg kemény víz esetén erős vízkőkiválással kell számolni. 60°C feletti hőmérséklet esetén a forrázásveszély elkerülése érdekében termosztatikus keverőszelepet kell beépíteni, ez a vételezett melegvízhez a hideg ágból hidegvizet kever.

 

Melegvíztárolót csak temperált, fagyveszélytől mentes helyiségben szabad elhelyezni. Nem szabad például a tárolót szigeteletlen, fűtetlen padlástérbe telepíteni.

A két hőcserélős tárolóknak a felső hőcserélőjére kötött hagyományos hőtermelővel csak a felső térfogatát lehet felfűteni, az alsó részt csak a napkollektorok fűtik. A tároló fertőtlenítése miatt ugyanakkor célszerű a teljes tárlótérfogatot időszakonként 60°C fölé emelni. Ez elpusztítja például a langyos vízben megtelepedő legionella baktériumokat. Hagyományos hőtermelővel a kéthőcserélős tárolók teljes térfogata csak úgy fűthető fel, ha szivattyúval ellátott vezetéket építenek be, mely a fertőtlenítő felfűtéssel egy időben a tároló felső részéből a forró vizet visszakeringteti a hidegvíz csonkon keresztül a tároló alsó részébe.

 

A melegvíztárolók biztonsági szerelvényei

 

A melegvíztárolók bekötését csak megfelelő képesítéssel rendelkező szakember végezheti. Be kell tartania a tároló kezelési utasításában leírtakat, valamint a vonatkozó szabványokat.

 

A bekötés fontosabb szabályai:

 

A hidegvíz ágba a folyásirány sorrendjében be kell építeni:

 

·         elzáró szerelvényt,

·         nyomáscsökkentő szelepet (szükség esetén),

·         visszacsapó szelepet,

·         biztonsági szelepet (általában 2,5 bar nyitónyomású),

·         nyomásmérőt (300 literes térfogat felett), és

·         ürítő csapot.

 

Nagyon fontos, hogy a biztonsági szelep és a tároló között nem lehet elzáró szerelvény. A biztonsági szelep felfűtés közben üzemszerűen csöpögni fog, ezért gondoskodni kell a csöpögő víz elvezetéséről. A csöpögő vizet, látható helyen levő, tölcséren keresztül kell bevezetni a csatornahálózatba.

 

Tilos a biztonsági szelep csöpögő ágát rögzítetten bekötni, vagy leszűkíteni.

A biztonsági szelep szükséges mérete:

·           200 literes tárolóig: 1/2”

·         1000 literes tárolóig: 3/4”

 

A biztonsági szelep csöpögését megfelelő méretű, ivóvíz rendszerekben alkalmazható zárt tágulási tartály beépítésével ki lehet küszöbölni. A tágulási tartály azonban nem helyettesíti a biztonsági szelepet, annak beépítése minden esetben kötelező.

Melegvíztárolókban egy hőmérőt is el kell helyezni, a melegvíz kilépésének közelében.

Külső hőcserélők

Egyszerűbb használati-melegvíz készítő napkollektoros rendszerekben általában beépített, belső hőcserélős tárolókat alkalmaznak. A kollektorfelület meghatározza azt, hogy a belső hőcserélőnek mekkora felületűnek kell lennie. A tárolókba beépíthető hőcserélő nagysága azonban korlátozott. Nagyobb napkollektor-felület esetén általában már nem elegendő a tárolóba beépíthető hőcserélő, ilyenkor külső hőcserélőket kell alkalmazni. Külső hőcserélőt kell alkalmazni nagyobb puffertárolók, vagy medencék fűtése esetén is.

 

Külső hőcserélős napkollektoros rendszerekben nem csak a napkollektor köri fagyálló folyadékot, hanem a fűtött közeget is szivattyúval kell a hőcserélőn keresztül keringtetni. A mindkét köri kényszeráramlás, valamint a korlátlanul választható hőcserélőnagyság- és típus miatt a külső hőcserélős rendszereknél optimális, jól szabályozható hőcsere valósítható meg.

A hőcserélő egy kis térfogatú edény, melyben a két közeg egymástól elválasztva, általában egymással szemben, szűk, nagy felületű járatok között áramlik. Az esetek többségében rozsdamentes acélból készült lemezes hőcserélőket használnak. Ezek készülnek forrasztott vagy szerelhető kivitelben. A forrasztott kivitel olcsóbb, de csak vegyszeres átmosással tisztítható. A szerelhető kivitel lemezei gumitömítéssel vannak elválasztva egymástól, és csavarok szorítják azokat össze, ezért tisztítás esetén szétszerelhetők.

 

A hőcserélők kiválasztása

 

A hőcserélőket hőtechnikai és áramlástani szempontok alapján kell kiválasztani. Hőtechnikailag a hőcserélők feladata az, hogy a napkollektorok által hasznosított hőmennyiséget a primer és a szekunder közeg viszonylag kis hőmérsékletkülönbsége mellett legyen képes átadni. Áramlástechnikailag pedig, a szükséges térfogatáramok mellett a hőcserélők ellenállása nem lehet nagyobb annál, mint amit a keringető szivattyú emelőmagassága a teljes rendszer nyomásveszteségét figyelembe véve biztosítani tud. A hőcserélőket általában a gyártók által rendelkezésre bocsátott számítógépes programokkal lehet méretezni. Csak olyan program használható, ahol a primer köri közegként beállítható a napkollektorokban alkalmazott propilén-glikol fagyálló folyadék. Víz-víz közegre elvégzett méretezések - a fagyálló folyadék víztől eltérő fajhő és viszkozitás értékei miatt - nem adnak helyes eredményeket.

 

A méretezés paramétereinek beállításához meg kell határozni a hőcserélővel átvihető teljesítményt, ami a napkollektorok teljesítményével egyezik meg.

Hőcserélők esetében az áramló közegek hőmérséklete, így azok hőmérsékletkülönbsége is a falfelület mentén változik. Ezért bevezették a hőcserére jellemző logaritmikus hőmérsékletkülönbség fogalmát. A napkollektoros rendszerek hőcserélőinek számítógépes méretezésekor a cél minél alacsonyabb, általában 5-10°C közötti logaritmikus hőmérsékletkülönbség elérése.

Azonos hőáramot alacsonyabb logaritmikus hőmérsékletkülönbség mellett csak nagyobb, ezért drágább hőcserélővel lehet átadni. Így a hőcserélők kiválasztása hőtechnikai méretezés mellett költségoptimalizálást is igényel.

Áramlástani szempontból a hőcserélőket általában úgy választják ki, hogy a nyomásveszteségük 20 kPa alatt legyen. Különösen ügyelni kell a medencék vízforgató körébe épített hőcserélők kiválasztásánál, mivel itt igen nagy térfogatáramok fordulnak elő. Ezért medencék hőcserélőjeként általában nem lemezes, hanem a köpenytér oldalon kis ellenállású, csőköteges hőcserélőket alkalmaznak.

Napkollektoros rendszerek szabályozása

A napkollektoros rendszerekben alkalmazott szabályozók feladata, hogy csak akkor indítsák el a napkollektoros fűtést, ha a kollektorok hőmérséklete magasabb a fűteni kívánt közeg hőmérsékleténél. Ezért a legegyszerűbb szabályozó egy hőmérsékletkülönbség kapcsoló, mely egy-egy érzékelővel méri a napkollektorok, és a fűtött tároló hőmérsékletét. A szabályozón beállított hőmérsékletkülönbség elérése esetén a szabályozóban lévő relé meghúz, és ez általában elindítja a napkollektor köri keringető szivattyút. A bekapcsolási hőmérséklet-különbség általában 5-20°C. Ezen kívül a szabályozón általában beállítható a tárolók csúcsértékű hőmérséklete is. Ha a napkollektorok felfűtötték a tárolót a beállított legnagyobb hőmérsékletre, akkor a szabályozó kikapcsolja a napkollektor köri szivattyút akkor is, ha a bekapcsoláshoz szükséges hőmérsékletkülönbség továbbra is fennáll.

 

Bonyolultabb, többtárolós napkollektoros rendszerek működését irányító szabályozók a napkollektorok mellett valamennyi fűtött tároló hőmérsékletét mérik, és tárolóként, az egytárolós automatika működésével megegyezően vizsgálják az adott tároló fűtésének bekapcsolási feltételeit. A tárolók napkollektoros fűtése előnykapcsolás alapján történik. Általában a magasabb hőmérsékletű tároló fűtése van előnykapcsolás szerint előrébb rangsorolva (pl. első helyen a melegvíztároló, második helyen a fűtési puffertároló, harmadik helyen a medence). Többtárolós rendszerek esetén a szabályozó a napkollektor köri szivattyún kívül a körök közötti átváltást végző motoros váltószelepeket, vagy a tároló körönként külön-külön beépített szivattyúkat is vezérli.

 

A napkollektoros rendszerekben alkalmazható szabályozóknak minőség, szabályozási tulajdonságok és ár szempontjából több változata létezik.

 

·         Analóg szabályozók. Ezeket egyszerűbb, főleg használati-melegvíz készítő, vagy medencefűtő rendszereknél alkalmazzák. Az analóg szabályozók tárlónként egy relé kimenettel rendelkeznek, melyekkel szivattyúkat vagy váltószelepeket lehet kapcsolni.

·         Mikroprocesszoros szabályozók. Ezeknél, a szabályozóknál a processzor összetettebb szabályozási lehetőségek, megvalósítását teszi lehetővé. Ilyen lehet például többtárolós rendszereknél az előnykapcsolás szerint hátrább sorolt tároló fűtése esetén a napkollektor köri szivattyú időszakonkénti rövid idejű kikapcsolása, mely lehetővé teszi a napkollektorok felmelegedését, és így az előrébb sorolt tároló fűtését.

·         A mikroprocesszoros szabályozók többnyire alkalmasak a szivattyúk hőmérséklet-különbség függvényében történő fordulatszám-szabályozására is. Így gyengébb napsütés esetén alacsonyabb, erősebb napsütés esetén magasabb szivattyú fordulatszám valósítható meg.

·         Mikroprocesszoros, szabadon programozható szabályozók. Ezek a szabályozók a napkollektoros rendszer mellett, az egész épületgépészeti rendszer egyedi, integrált szabályozására alkalmasak.


Mikroprocesszoros szabályozókhoz általában hozzákapcsolhatók hőmennyiségmérők, mérés-adatgyűjtők vagy napsugárzás-érzékelők is, melyek segítségével a napkollektoros rendszer üzeme figyelemmel kísérhető, regisztrálható.

 

Az érzékelők elhelyezése

 

A szabályozóknak általában tartozéka a szabályozási feladat megvalósításához szükséges számú érzékelő. Ezek többnyire ellenállás-érzékelők, melyek hőmérséklet-változás hatására változtatják ellenállásukat. Nagyon fontos, hogy az érzékelőket olyan helyen, és olyan módon helyezzük el, hogy azok valóban a mérni kívánt hőmérsékletet érzékeljék. A napkollektoroknál általában az abszorberlemez hőmérsékletét célszerű mérni a kilépő csonk közelében.

Tapasztalatok szerint, ha a napkollektor érzékelőt a kilépő csővezetékre teszik, akkor az csak a keringés megindulása után mér kielégítő pontossággal, de a napkollektorok felmelegedését csak késéssel érzékeli.

Melegvíztárolók érzékelőjét általában a hőcserélő övezetében, kb. a hőcserélők felének magasságában, kell elhelyezni. A tárolókon többnyire található erre a célra kiképzett hüvely, vagy csonk.

 

Az érzékelőket általában 2x1mm2-es szigetelt, sodrott réz vezetékkel kell bekötni. A kötéseket, toldásokat célszerű forrasztással végezni. Külső térben, pl. a napkollektor érzékelő bekötéséhez csak UV-álló kábel használható. A vezetéket védőcsőben, vagy egyszerűbb esetben a csővezeték hőszigeteléséhez kábel-kötegelővel rögzítve lehet vezetni. A vezeték nem érhet hozzá a rézcsőhöz. A vezetéket nem célszerű az erősáramú vezetékekkel együtt vezetni. Az érzékelőket a hüvelybe behelyezés előtt a jó hőátadás érdekében hővezető pasztával kell bekenni.

 

A napkollektorokat lehetőség szerint azonos dőlésszöggel és tájolással kell elhelyezni. Nem célszerű pl. arra törekedni, hogy a napkollektorok egy csoportja a keleti, másik csoportja a nyugati, harmadik csoportjuk pedig esetleg a déli tetőfelületre kerüljön. Ha ez valami miatt mégis elkerülhetetlen, akkor a különböző elhelyezkedésű napkollektor-csoportokat hidraulikailag és szabályozástechnikailag is külön kell választani. Ez a rendszer bonyolultságának lényeges, és indokolatlan növekedéséhez vezet.

 

Általánosan elmondható, hogy a napkollektoros rendszerek megvalósításánál törekedni kell az egyszerűségre, az átláthatóságra. Minden egyes újabb szivattyú, keverő- vagy váltószelep és szabályozó egyben újabb hibaforrást is jelent.

 

Fontos, hogy a megrendelő is megértse a rendszer működését, mert csak úgy tudja ellenőrizni a helyes üzemelést, és maga is elvégezni időszakonként a beállításokat, ha szükséges.

 

A hőmérsékletérzékelő elhelyezése

A hőmérsékletérzékelő elhelyezése

 

Csővezeték rendszer

A napkollektoros rendszerekben alkalmazott napkollektor-köri (primer) csővezetékeknek meg kell felelniük a 180°C-os maximális hőmérséklet és a 3 bar maximális nyomás által támasztott követelményeknek.

Kollektor-köri csővezetékként az épületgépészetben általánosan alkalmazott csövek közül a vörösrézcső, a horganyzott acélcső, nem horganyzott ún. “fekete” acélcső, újabban a rozsdamentes acél gégecső és az alumíniumcső használható. Előnyösebb szerelhetősége miatt azonban a vörösrézcső, a horganyzott acélcső, de leginkább az alumíniumcső és a rozsdamentes acél gégecső alkalmazását javasoljuk. Ez utóbbiak élattartama hosszabb, könnyen megmunkálhatóak, könnyen beszerelhetőek, áramlási ellenállásuk kicsi, így tiszta belső részükben lerakódás nem képeződik.

A vörösrézcső használata esetén, a réz agresszivitása miatt, nem ajánlott közös rendszerben a horganyzott acélcső vagy az alumíniumcső alkalmazása.

Csőkötésként elsősorban a lágyforrasztást, a hollandi vagy a roppantásos kötést javasoljuk. Elméletileg (főleg a napkollektorok közvetlen közelében) a magas hőmérséklet miatt már csak keményforrasztást lehetne alkalmazni, ezért inkább a hollandi, vagy a roppantásos (présfiting) kötést javasoljuk. Tapasztalatunk szerint a lágyforrasztás megbízható kötést eredményez a napkollektortól távolabbi szakaszokon. Keményforrasztás esetén a rézcsövet vörös izzásig kell melegíteni, ami a cső kilágyulását, túlhevítés esetén tönkremenetelét eredményezi.

Csőkötésként alkalmazható, főleg az alumínium csövek esetében, az újabban egyre jobban terjedő présfitting megoldás. Ügyelni kell azonban arra, hogy csak olyan gumi tömítőgyűrűt szabad használni, ami magas hőmérsékleten is alkalmazható.

Fontos: Az alumíniumcső használata más anyagok helyett, nagy megtakarítást jelent a beruházási költségek mérséklésében, könnyen szerelhető, ráadásul hosszabb üzemi időt biztosít az agresszív anyagú rézcsővel és rozsdásodásnak kitett acélcsővel szemben.

 


A csővezeték méretének meghatározása

 

A napkollektor köri csővezeték méretének meghatározása ugyanúgy történik, mint az egyéb épületgépészeti rendszerek csővezetékeinek méretezése. A lényeges különbség, hogy a napkollektorokban fagyálló folyadék kering, melynek a víztől eltérő a viszkozitása.

 

A csővezeték szerelésének szempontjai

 

·        Alumínium vagy vörösréz csővezeték alkalmazásakor fokozottan kell ügyelni a hőtágulások biztosítására. Az alumínium hőtágulása 100%-al, a réz hőtágulása 50%-al, nagyobb az acélcső hőtágulásánál. Egy méter cső tágulása 1°C hőmérsékletváltozás esetén az átmérő és falvastagság méretétől függetlenül, 0,024 mm az alumínium és 0,017 mm a réz esetében.

·        A csővezeték rögzítésére gumibetétes csőbilincseket kell alkalmazni. A rézcsőhöz általánosan használt műanyag, pattintós csőbilincsek a nagy hőmérséklet miatt kollektoros rendszerekben nem minden esetben használhatóak.

·        Több kollektor-csoport esetén ezeket párhuzamosan kell kapcsolni. Ügyelni kell arra, hogy minden napkollektor-csoport térfogatárama azonos legyen. Ez ún. Tichelman kapcsolással valósítható meg. A kapcsolás elve, hogy minden napkollektor esetén egyforma hosszúak az áramlási utak, és így azonosak az áramlási vesztességek.

·        A szekunder (nem napkollektor köri) csővezeték anyagának meghatározásakor figyelembe kell venni a csatlakozó rendszer vezetékeinek anyagát is. Réz vezeték esetén be kell tartani az ún. folyásirány szabályt. Ez azt jelenti, hogy áramlási irányban haladva rézből készült csővezetéket csak a horganyzott acélból, alumíniumból, vagy más anyagból készült csővezeték-szakasz után szabad beépíteni. Ellenkező esetben, a vízben oldott réz átkerülve a más anyagból készült szakaszba lyukrozsdásodást okozhat.

 

A napkollektor-csoport párhuzamos kötése

A napkollektor-csoport párhuzamos kötése

A csővezetékek hőszigetelése

A napkollektor köri csővezetékeket a hővesztességek csökkentése érdekében teljes terjedelmükben hőszigetelni kell. A hőszigetelő anyagoknak meg kell felelniük a napkollektorok üresjárata utáni induláskor fellépő igen magas, 150°C fölötti hőmérsékletnek.

A külső térben vezetett csővezetékek hőszigetelésének bírnia kell a napsugárzást (UV-álló) és a nedvességet (esőt, havazást).


Kollektor köri csővezetékek hőszigetelésére használhatók üveg- vagy kőzetgyapot anyagú, alufóliával bevont (kasírozott) csőhéjak, vagy olyan szintetikus gumi anyagú csőhéjak, melyek legalább 150°C-ot, rövid ideig 175°C-ot károsodás nélkül elviselnek. Ha a napkollektor köri csővezeték meleg ágát hagyományos, általánosan használt habosított csőhéjjal, szigetelik, akkor az előbb vagy utóbb össze fog zsugorodni, helyenként le fog olvadni.

Külső térben csak az UV sugárzásnak is ellenálló szigetelést lehet használni, és az ilyen szigeteléseket is célszerű UV-álló festékkel lefesteni, vagy keményhéjalással ellátni. A gumi anyagú szigeteléseket általában a madarak is károsítják, csipegetik.

Hőszigetelt csövek hővesztessége a szállított közeg és a környezeti levegő hőfokkülönbsége, valamint a szigetelésvastagság és a csőátmérő viszonyának függvénye.

 

 

A javasolt hőszigetelés-vastagságok:

 

Csővezeték mérete és a hőszigetelés vastagsága

·         22-ig                      20 mm

·         28-35-ig                 30 mm

·         42-54-ig                 az átmérővel azonos

Légtelenítő elemek

A hőhordozó folyadék tökéletes keringtetésének feltétele a hidraulikus rendszerbe feltöltéskor bekerülő levegő és a folyadékból a felmelegedés hatására kiváló oxigén eltávolítása.

Légtelenítés céljára alkalmazható kézi légtelenítő csap, légtelenítő-edény kézi ürítő csappal, és önműködő vagy pedig abszorbciós légtelenítő. Csak olyan légtelenítő elem alkalmazható, ami a propilén-glikol fagyálló folyadéknak ellenáll.

Valamilyen légtelenítési lehetőségnek a rendszer minden magas pontján (15. ábra) kell lennie, illetve a csővezetéket úgy kell kialakítani, hogy azok száma és hossza minél kevesebb legyen, a levegő eljuttasson a légtelenítő irányába. Légtelenítés szempontjából a legcélszerűbb megoldás az lenne, ha a napkollektorokból kilépő csővezeték legmagasabb pontjára lehetne elhelyezni automatalégtelenítőt, ezek azonban a fellépő magas hőmérséklet miatt itt nem alkalmazhatók.

 

A napkollektor-mező magas pontján kézi légtelenítő, vagy légtelenítő edény beépítését javasoljuk, a tető alatti kivezetéssel és elzárócsappal. Még jobb, ha a légtelenítő vezetéket elvezetik a rendszer töltésének helyére. Ebben az esetben egyszerű a feltöltés, légtelenítés, az üzemi nyomás beállítása, mert mindez egy helyről elvégezhető. Légtelenítő vezetéknek 6x1mm-es lágy vörösrézcső alkalmazható.

 

Abszorbciós vagy önműködő légtelenítőt a hőcserélő és a keringető szivattyú utáni hideg ágba, könnyen elérhető helyre kell beépíteni. Az automatalégtelenítők akkor légtelenítenek a leghatékonyabban, ha T-idommal hosszabb vízszintes csővezeték szakaszba építik őket, ahol a levegőkavarodás nélkül, a csővezeték felső részén össze tud gyűlni. 

 

A napkollektorok ferde tetőre szerelése

A napkollektorok ferde tetőre szerelése, légtelenítése

 

Nagyobb rendszereknél a hatékonyabb légtelenítést eredményező légtelenítő edényt vagy abszorbciós légtelenítőt kell alkalmazni. Az abszorbciós légtelenítő zárt, hengeres edény, amibe olyan fémhálót helyeznek, mely megkavarja a rajta átáramló folyadékot, és így az oldott oxigén könnyebben kiválik.

Keringető szivattyúk

A keringető szivattyú biztosítja a hőhordozó közeg szállítását a napkollektor és a hőcserélő között. A szivattyút az épületgépészetben szokásos módon, a szükséges térfogatáram és a teljes rendszere számított nyomásveszteség alapján kell kiválasztani.

 

Kollektorok alkalmazása esetén a rendszer jó hatásfoka érdekében napkollektoronként a hőhordozó folyadék alábbi térfogatáramát kell biztosítani:

·         Az ajánlott térfogatáram:          60 liter/óra. napkollektor

·         A legnagyobb térfogatáram:    100 liter/óra. napkollektor

 

A napkollektorokat hidraulikailag párhuzamosan kell kapcsolni. A rendszer teljes térfogatárama a napkollektorok darabszámának és a napkollektoronként biztosítani kívánt térfogatáramnak a szorzata. A napkollektorok nyomásvesztesége 10 db napkollektor összekapcsolásáig tetszőleges napkollektorszám esetén ~3 kPa.

 

A szivattyú kiválasztásánál figyelemmel kell lenni arra, hogy a szivattyúkatalógusok a jelleggörbéket általában víz közegre adják meg, napkollektoros rendszer esetén pedig a keringetett közeg monopropilén-glikol vizes oldat, melynek viszkozitása a víztől eltérő.

 

Az alkalmazott (-24°C-ra kevert) szuper-zöld fagyálló folyadék adatai 50°C-on:

·         Sűrűsége:                         ρ = 1,04 g/cm3

·         Dinamikai viszkozitása:        η = 8,5 - 8,7 cPs

 

A fagyálló folyadék viszkozitása a hőmérséklet csökkenésével meredeken növekszik, 0°C-on már 10 mPa. A víz közeghez képest magasabb viszkozitási érték a térfogatáram kb. 20%-os, illetve a szállítómagasság kb. 10%-os csökkenését eredményezi.

A szivattyú gyártmányának kiválasztásánál meg kell győződni arról, hogy az alkalmazott szerkezeti elemek (pl. tömítés, járókerék) ellenállnak-e a propilén-glikolnak.

A napenergia-hasznosító rendszerekben elsősorban Grundfos, vagy Wilo szivattyúk használatát javasoljuk. Ezek a szivattyúk megbízhatóak, szerelésük egyszerű, teljesítményük több fokozatban szabályozható.

 

Az ajánlott típusok (Grundfos):

·         UPS 25-40 ~6 db napkollektorig,

·         UPS 25-50 ~10 db napkollektorig,

·         UPS 25-60 ~20 db napkollektorig,

·         UPS 25-80 ~40 db napkollektorig.

 

Mivel a szivattyúk teljesítménye általában meghaladja az optimális térfogatáram által megkívánt értéket, ezért a szivattyú körébe szabályozószelepet kell beépíteni. Erre a célra golyóscsap nem alkalmazható.

 

Nagyobb napkollektor darabszám vagy hosszabb csővezeték esetén a szivattyú típusát számítással kell meghatározni.

A szivattyúk álló helyzetben nem akadályozzák meg az áramlást, ezért napkollektoros rendszerekbe visszacsapó-szelepet kell beépíteni. Ezzel megakadályozható az esetleg kialakuló nem kívánt, fordított irányú gravitációs keringés, mely éjszaka, vagy napsütésmentes időben a tárolótartály vizének napkollektorokon keresztüli lehűlését eredményezné.

 

A használati melegvíz körben alkalmazott szivattyúknak meg kell felelniük az ivóvízvezetékek esetében előírt követelményeknek. Ezeknek a fűtési keringető szivattyúk többsége nem felel meg. Alkalmazhatók például a bronzházas Grundfos B sorozatjelű szivattyúk.

 

A szivattyúkat általában vízszintes forgástengellyel kell beépíteni. Hollandi csavarzat helyett szivattyúelzáró golyóscsapok alkalmazását javasoljuk, mert meghibásodás esetén így a szivattyú a rendszer leengedése és újratöltése nélkül (mely a fagyálló folyadék miatt nehézkesebb, mint vizes rendszereknél) kiszerelhető.

Motoros zónaszelepek

A motoros zónaszelepek napkollektoros rendszerekben nyitásra, zárásra vagy irányváltásra szolgálnak. Az egyútú (kétjáratú) kivitelek nyitásra-zárásra, a kétútú (háromjáratú) kivitelek pedig irányváltásra használhatók.

A motoros szelepek (pl. Honeywell VC típus) gyorsabb működésűek, a motoros golyóscsapok (pl. Modulo típus) lassabb működésűek, de kisebb a nyomásveszteségük.

Fagyálló hőátadó folyadék

A napkollektoros rendszereket minden esetben fagyálló hőátadó folyadékkal kell feltölteni. Erre a célra csak propilén-glikol, vagy monopropilén-glikol alapú, nem mérgező fagyálló folyadék használható. Az általánosan (pl. autókban) használt etilén-glikol mérgező, ezért napkollektoros körben, ahol a hőcserélő esetleges kilyukadása következtében a fagyálló az ivóvíz hálózatba juthat, nem alkalmazható.

A propilén-glikol fagyálló folyadékot tömény sűrítmény formájában árusítják. A fagyálló csak hígítva használható. A javasolt hígítás: 40-45% fagyálló, 55-60% víz. Ilyen hígítás esetén a fagyáspont: -22 és -26°C között. 45% térfogatszázaléknál több fagyálló alkalmazása nem javasolt, mert az megnöveli a keringető szivattyúk teljesítményfelvételét, és így tönkremenetelüket okozza.

A monopropilén-glikol vizes oldata szintén megtalálható a kereskedelmi forgalomban Fernox Solar S1 márkanéven 10, 20 és 25 literes kiszerelésben. Előnye, hogy védetté teszi a szolár rendszer elemeit a korrózióval szemben.

 

Megrendelő figyelmét fel kell hívni arra, hogy a fagyálló folyadék fagyáspontját minden évben, a fagyásveszélyes időszak előtt ellenőrizze.

 

SOLARKOLLEKTOR®
Sík napkollektor
Péter Impex Kft
 
A sík napkollektor magyar fejlesztés, magyar gyártás.
Rendelkezik magyar és EU közösségi mintaoltalommal, TÜV Rheinland termékminősítéssel, DIN CERTCO tanusítvánnyal

 

A Nap, mint energiaforrás

Napkollektor

Mit tud az újonnan kifejlesztett napkollektor?

Napkollektor rendszerek

Napkollektor rendszerek általános felépítése

A napkollektoros rendszerek tartozékai

A légköri elektromosság elleni védelem

Kezelés és karbantartás

Napkollektor rendszerek méretezése

Napkollektor kapcsolási vázlatok

A felhasználó ha okosan dönt, mit nyer az új napkollektor termékkel?

Napkollektor rendszerek állami támogatása, napkollektor pályázat

 

 

Oldaltérkép

 

 

A napkollektoros rendszerek tartozékai

A napkollektor rendszerek általában az alábbi fő részekből állnak:

 

-       Napkollektorok, melyek elnyelik, és hővé alakítják a napsugárzás energiáját.

-       Tárolók, melyek a napkollektorokkal termelt hőt melegvíz formájában tárolják a napsütés-mentes időszakra.

-      Működtető, szabályozó, biztonsági, és ellenőrző berendezések, szerelvények. Ide tartozik a keringető szivattyú, az automatika, a tágulási tartály, a biztonsági szelep, visszacsapó szelep, a légtelenítő, a nyomásmérő, a hőmérő és egyéb szerelvények.

Vezérlő és szabályozó berendezések

A vezérlő és szabályozó berendezések a rendszer irányítására szolgálnak. Feladatuk pl. az, hogy a szivattyú bekapcsolásával megindítsák a hőhordozó közeg keringését akkor, amikor a napkollektorban lévő munkaközeg hőmérséklete nagyobb a tároló hőmérsékleténél, tehát a kollektorból a hasznos hő szállítható a tárolóba.

A szabályozási feladatokat a tárolók, és a kollektorok száma határozza meg. Alkalmazható egy, két, vagy három tárolós rendszer, egy vagy két napkollektormezővel. A tároló általában melegvíz tartály, fűtési vizet tároló puffertartály, vagy medencevízfűtés esetén maga a medence.

 

Néhány jellegzetes rendszer kapcsolási vázlata:

Egy kollektor mezős, egy tárolós rendszer

Egy kollektor mezős, két tárolós rendszer

Egy kollektor mezős, egy tárolós rendszer

Egy kollektor mezős, két tárolós rendszer

Egy kollektor mezős, három tárolós rendszer

Két kollektor mezős, egy tárolós rendszer

Egy kollektor mezős, három tárolós rendszer

Két kollektor mezős, egy tárolós rendszer

Napkollektor szerelőkeretek

A napkollektorokat az esetek többségében tetőszerkezetre kell felszerelni. Az alkalmazott rögzítő-elemeknek olyanoknak kell lenniük, hogy ellenálljanak a kültéri időjárás viszontagságainak és a rozsdásodásnak, karbantartást ne igényeljenek, biztonságos, beázást nem okozó felszerelést tegyenek lehetővé.

 

Fontos szempont az esztétika is, a napkollektorok és tartószerkezeteik nem ronthatják az épület külső látványát.

 

A napkollektorok felszereléséhez alumíniumból készült szerelőkeretek javasolunk, ezek kielégítik a fenti követelményeket. A keretek egységcsomagban kaphatók, méretre szabva, előfúrva, az összeszereléshez szükséges rozsdamentes acél kötőelemekkel együtt.

A keretek alkalmazásával a napkollektorok könnyen, gyorsan, különösebb szakismeret nélkül is felszerelhetőek.

Más-más szerelőkeret ajánlott a ferde ill. a lapos tetőre. A keretek kettő vagy három darab napkollektor felszereléséhez készülnek, ezek egymás mellé helyezésével 2-10 db-ig tetszőleges számú kollektor felszerelhető. A keretek egymás mellé sorolásához szintén alumíniumból készült összekötő elemeket kell alkalmazni.

 

Ferde-tetős szerelőkeretek az általánosan használt tetőfedő anyagok többségénél alkalmazhatók.

A keretek napkollektoronként 2 db ún. tetőkampóval, vagy tőcsavarral rögzíthetők a tetőszerkezethez, általában a szarufához. A tetőkampó - hasonlóan a hófogó kampókhoz - a tetőcserép, vagy egyéb elem alá tolható, és itt lecsavarozható.

Ferde-tetős szerelőkeret vázlat 1

Ferde-tetős szerelőkeret vázlat 2

Ferde-tetős szerelőkeret vázlat 3

 

Lapos-tetős szerelőkeretek alkalmazásával a napkollektorok bármilyen sík területen felszerelhetők. Ez lehet épületek lapostetője, vagy pl. talajszint az épület, esetleg medence mellett. Lapos-tetős keret alkalmazható a napkollektorok függőleges falra szereléséhez is.

A lapos-tetős szerelőkeretek dőlésszöge 45°. Ha a tető 20m-nél magasabb, akkor megerősített kivitelű keretet kell alkalmazni. A szerelőkeretek alkalmazásához ki kell képezni egy megfelelő vízszintes, síkfelületet. Ehhez a szerelőkeretek lecsavarozással vagy súlyterheléssel rögzíthetők.
 

Lapos-tetős szerelőkeret vázlat 1

Bádogozó készletek napkollektorok tetőbe integrálásához

Bádogozó készletekkel a napkollektorok a tetőhéjalás helyett, a tetőbe integrálva építhetők be. A bádogozó készletek hasonlóak a tetőablakoknál alkalmazott bádogozáshoz. Mivel a napkollektorok dobozszerkezete alumínium, javasoljuk a bádogozásnál is az alumínium, esetleg a horganyozott lemezt. A bádogozó készletek egységcsomagban kaphatók, a csomagok a bádog elemeken kívül tartalmaznak minden olyan segédeszközöket (csavarok, tömítő-szalagok, szegek, stb.), amik a szereléshez szükségesek.

A napkollektorok tetőbe integrálásához alkalmazott idomokat, lefogó bilincseket a szarufákra kell felcsavarozni, és ezekkel kell rögzíteni azokat, biztosítva a hőtágulási lehetőséget.

Külön bádogozó készlet kapható a napkollektorok egy, vagy egymás alatt két sorban történő beépítéséhez. Az alapbádogozó készlet a két szélső napkollektor, a bővítő készlet pedig a közbenső napkollektorok, beépítésére szolgál.

Napkollektor szerelési egység

A szoláris szerelési egység olyan előre gyártott, kompakt egység, ami tartalmazza a napkollektoros rendszerek működtetéséhez szükséges berendezések, szerelvények többségét. Alkalmazásával a szoláris kör szerelése lényegesen egyszerűbbé válik, és biztosított a szakszerű működtetés.

Tágulási tartály

Napkollektoros rendszerekben a tágulási tartály feladata hogy az üzemszerűen előforduló hőmérséklethatárok között lehetővé tegye a fagyálló hőhordozó közeg térfogatváltozását. Erre a célra zárt, gumimembrános tágulási tartályokat kell használni. Az ilyen tartályok térfogata rugalmas, gumimembránnal ketté van választva, a membrán (hártya) egyik oldalán a hőhordozó közeg, a másik oldalán gáz, általában levegő van. A tartály működési elve a levegő összenyomhatóságán alapul. Ha a napkollektoros rendszerben megnő a hőmérséklet, a hőhordozó közeg kitágul, a membránon keresztül összenyomja a tartályban lévő levegőt úgy, hogy a rendszer nyomása csak kis mértékben emelkedik.  

A tágulási tartály nyomás és térfogatváltozás viszonyainak alakulása (10. – 11. ábrák) a hőmérséklet-változás függvényében:

 

Nyomás és térfogat viszonyok a tágulási tartályban

Nyomás és térfogat viszonyok a tágulási tartályban

 

005006

A víz- és a hőhordozóközeg térfogatváltozása a hőmérséklet függvényében

 

A tágulási tartályt akkorára kell méretezni, hogy az ilyenkor megemelkedő nyomás ne haladja meg a rendszer megengedett legnagyobb nyomás értékét. A tartály helyes kiválasztása és beállítása elengedhetetlen feltétele a napkollektoros rendszer zavartalan üzemének. A tágulási tartály levegő-oldalának előnyomását a rendszer feltöltése előtt be kell állítani. Az előnyomás helyes értéke a rendszer hideg állapotban tervezett nyomásának 90%-a. Ekkor feltöltés után, hideg rendszer esetén a tartályban 10% folyadék van, ez elegendő az esetleges légtelenítési és szivárgási veszteségek pótlására.

 

Be kell tartani az alábbi előírásokat:  

 

·        A hőhordozó közeg forrását az üzemi nyomás növelésével lehet megakadályozni. Ezért napkollektoros rendszerekben a lakásfűtési rendszerekhez képest más üzemi nyomást kell alkalmazni. A napkollektorok alkalmazása esetén 2,5 bar nyomásra beállított biztonsági szelepet ajánlott beépíteni, és a rendszert hideg állapotban 1,5 bar nyomásra kell feltölteni.

·        A napkollektorok felső pontjára nem szabad automata-légtelenítőt elhelyezni. Ez ugyanis egyrészt forrás esetén a napkollektorokból kiengedi a gőzt, másrészt a magas hőmérséklet miatt tönkremegy.

·        A biztonsági szelep lefújó ágát egy fém kannába kell vezetni, hogy esetleges lefúvás esetén a fagyálló folyadék ne vesszen kárba.

Szoláris szerelési egység alkalmazása esetén a tágulási tartályokat 12-24 l-ig a szoláris egységen található konzolra kell csatlakoztatni. Ez a tartályok biztonságos, tartós rögzítését eredményezi. Ha nem alkalmaznak szoláris egységet, vagy a tágulási tartály lábon álló kivitelű, akkor a tartályt az alábbiak szerint kell beépíteni:

o     A tágulási tartály és a biztonsági szelep valamint a kollektorok közé nem szabad elzáró szerelvényt beépíteni.

o    A tágulási tartályt a rendszer hideg ágába kell beépíteni, függesztett kivitelben. A függesztett kivitel előnye, hogy feltöltéskor a tartály vízteréből a levegő el tud távozni, valamint magas rendszerhőmérséklet esetén a tágulási tartály nem melegszik fel.

o    Fontos! Az alkalmazott tágulási tartály megengedett legnagyobb nyomása a biztonsági szelep által meghatározott 2,5 bar, vagy magasabb kell, hogy legyen! Az általánosan alkalmazott fűtési tágulási tartályok többsége ennek a követelménynek nem felel meg. Alkalmazhatók a különleges szolár tartályok, vagy az ivóvíz rendszerekben használatos hidrofor tartályok, amennyiben a gumimembránt a fagyálló folyadék nem károsítja.

Melegvíztárolók

A használati-melegvíz készítő napkollektoros rendszerek egyik legfontosabb eleme a melegvíz tárolótartály, közismert nevén a bojler. A napkollektoros rendszerek optimális működése nagymértékben a tároló típusának, űrtartalmának helyes kiválasztásától függ.

Tárolót azért kell alkalmazni, mert a napsütés időtartama általában nem esik egybe a melegvízfogyasztás idejével. A napkollektorok csak napközben működnek, akkor is az időjárás szeszélyeitől függően, míg nagyobb melegvízfogyasztás pl. családi házakban általában este, és reggel van. Ezért a napsütés idején napkollektorokkal hasznosított energiát melegvíz formájában tárolni kell a fogyasztás idejére. A napkollektorok a napenergiát csak átalakítják, nem tárolják, űrtartalmuk szándékosan kicsi. A tárolást belső, temperált térben elhelyezett, hőszigetelt tároló tartályban kell megvalósítani.

A használati-melegvíz készítő napkollektoros rendszerekben használatos tárolók két lényeges jellemzőben térnek el az épületgépészetben általánosan használatos tárolóktól:

 

·        Űrtartalmuk nagyobb, felépítésük általában lábon álló, karcsú, magas tartály.

·        Tartalmaznak egy, vagy több belső hőcserélőt, esetleg elektromos fűtőpatront, így több, különböző energiahordozóval üzemelő hőtermelővel is fűthetők.

 

Belső hőcserélős tárolókat közvetett fűtésű tárolónak is nevezni. A közvetett jelző azt jelenti, hogy a hőtermelő berendezés (pl. kazán, napkollektor) a tárolón kívül helyezkedik el, és a tárolót a hőtermelőben felmelegített folyadék a beépített belső hőcserélőben, csőkígyóban áramoltatva fűti fel.

A tároló hőcserélő lehet rögzítetten behegesztett acél csőkígyó, vagy karimán keresztül beépíthető sima vagy bordáscsöves réz csőkígyó.

 

Napkollektoros rendszerekben alkalmazott tárolok felépítése 

Napkollektoros rendszerekben alkalmazott tárolok felépítése

 

Fontos, hogy a napkollektorok hőcserélője alul, míg a hagyományos hőtermelő hőcserélője felül helyezkedjen el. Így lehetővé válik, hogy a hideg- és a melegvíz sűrűségkülönbség folytán kialakuló rétegződése miatt a hagyományos hőtermelő (pl. kazán) csak az elvételhez közeli, felső tárolótérfogatot melegítse fel.

 

A melegvíztárolók anyaga

 

·        A melegvíztárolók tartályteste általában acéllemezből, hegesztett kivitelben készül. A normál szénacélból készült tárolók belső felületét valamilyen felületvédő bevonattal látják el. Ez általában zománc, amit vákuumtérben, folyékony állapotban visznek fel a tartály felületére, és magas hőmérsékleten ráégetnek. Léteznek egyéb, szintetikus bevonatok is, melyeket por alakban visznek fel, és szintén ráégetéssel rögzítenek.

 

·         A felületvédő bevonatok a rozsdától védik a tartálytestet. Tökéletes bevonat azonban nem létezik, abban kisebb hibák, hajszálrepedések mindig előfordulnak. A hibák helyén rozsda alakul ki, ennek megakadályozására a tárolókba ún. aktív anódot építenek be. Ez többnyire magnézium anyagú rúdanód. Az anód úgy akadályozza meg a rozsdásodást, hogy az acél tartálytest helyett ő maga rozsdásodik, így előbb-utóbb elfogy. Ezért nagyon fontos az anód időszakos ellenőrzése, szükség esetén cseréje. A tartályok kilyukadását az esetek többségében az anód hiánya okozza.

 

·         Magnézium anód helyett a bojlerek felületvédelmére használható ún. idegenáramú anód is. Ez a magnézium anóddal ellentétben nem fogy el, cserélni nem kell. Az idegenáramú anód egy vékony, pálcaszerű anódból és egy tápegységből áll, melyet az elektromos hálózathoz kell csatlakoztatni. A tápegységen általában zöld led jelzi a helyes üzemet, piros led pedig az üzemzavart.

 

Figyelem! Az anódok a tartálytestet védik a rozsdásodástól, a kilyukadástól. Az anód a vízkövesedéstől nem véd, azzal nincs összefüggésben. Kemény víz esetén külön vízlágyító, vízkőmentesítő berendezéssel kell védekezni a vízkövesedés ellen.

 

·        Melegvíztárolókat készítenek rozsdamentes acélból is. Ezek a tárolók felületvédelmet, anódos védelmet nem igényelnek. A rozsdamentes tárolók élettartama hosszú, különösebb karbantartást nem igényelnek, hátrányuk, hogy áruk lényegesen magasabb a szénacél tárolók áránál.

 

A tárolók hőszigetelése

 

Az alkalmazott melegvíztárolóknak megfelelő hőszigeteléssel kell rendelkezniük. Kisebb tárolók esetében (500 l-ig) a hőszigetelés általában a közvetlenül a tartálytestre habosított kemény PUR hab. Nagyobb tárolóknál a hőszigetelés általában külön szállított, a tartálytestre cipzárral rögzíthető rugalmas szivacslemez. A hőszigetelés külső burkolata kemény hab esetén lehet festett acéllemez vagy cipzározható műanyag, rugalmas hab esetén minden esetben műanyag, műbőr vagy vászonszerű anyag. A tárolók hőszigetelésének legkevesebb vastagsága 5 cm, de lehetőség szerint célszerű ennél vastagabb szigetelésű tárolót választani. A tartálygyártók a hőszigetelés jellemzésére a készenléti veszteséget adják meg. Ez kWh-ban adja meg a tároló 24 órás hővesztességét, általában 60°C-os vízhőmérséklet és 20°C-os külső hőmérséklet esetén.

 

A melegvíztárolók hővesztességének nagyobb részét sokszor nem a tartálytest vékony hőszigetelése, hanem a csatlakozó csonkok, és csővezetékek nem megfelelő hőszigetelése okozza. A napkollektoros rendszerekben alkalmazott tárolókon igen sok csonk található, ezek hővesztessége jelentős lehet. Ügyelni kell a csatlakozó csővezetékek nyomvonalára és hőszigetelésére is. A melegvíz, kisebb fajsúlya miatt fölfelé törekszik, ezért a tárolóból fölfelé irányuló csővezetékek szabad utat biztosítanak a csővezetéken belüli gravitációs áramlásnak. Természetesen a csővezetékeket teljes terjedelemben hőszigetelni kell.

 

A tárolók számottevő hővesztességét okozhatja a cirkulációs (visszaforgató) vezeték energiapazarló üzeme is. Visszaforgató csővezetéket azért építenek ki, hogy a csapokból azonnal melegvíz folyjon. Cserében a bojler vizét időnként szivattyúval áramoltatni kell, ez viszont hővesztességet jelent, tehát figyelni kell az optimális beállításra.

 

A cirkulációs veszteség csökkenthető az alábbiak figyelembevételével:

 

·        A visszaforgató vezetéket teljes terjedelmében hőszigetelni kell.

 

·        A visszaforgató szivattyút kapcsolóórával vezérelve, csak abban az időszakban kell üzemeltetni, amikor feltételezhetően melegvízfogyasztás van.

A kapcsolóóra mellett a visszaforgató szivattyút célszerű termosztáttal is vezérelve kikapcsolni, ha a visszaforgató vezeték visszatérő ágában megjelent a melegvíz.

 

·        Napkollektorokkal is fűtött tároló esetén a visszaforgató vezetéket a tároló középső, felső harmadába kell bekötni, mivel ha azt az alsó hidegvíz csonkba kötik vissza, akkor a visszaforgató szivattyú összekeveri a tartály vizét, így megszünteti a természetes rétegződést.

 

A melegvíztárolók mérete

 

A napkollektoros rendszerekben alkalmazott melegvíztárolók optimális térfogatát elsősorban a napi melegvízfogyasztás mennyisége határozza meg. A napenergia-hasznosító rendszer akkor működik megfelelően, ha napsütés esetén a napkollektorokkal napközben megtermelt, és a bojlerben eltárolt melegvíz elegendő a következő napi napsütés időszakáig. Csak így lehet elérni azt, hogy nyáron a napkollektorok közel 100%-ban előállítsák a melegvíz szükségletet, és a hagyományos hőtermelő csak borultabb napokon kapcsoljon be. A tároló optimális méretét befolyásolja még a napkollektorfelület nagysága, és a melegvíz fogyasztás jellege.

 

A melegvíztárolók üzemi körülményei

 

A melegvíztároló beépítése előtt meg kell győződni arról, hogy a tároló megengedett csúcsértékű üzemi nyomása és hőmérséklete magasabb az előforduló legnagyobb értékeknél. Ha a vízhálózat nyomása akár időszakosan is meghaladhatja a tároló megengedett nyomását, akkor nyomáscsökkentőt kell beépíteni. A tárolót fűtő hőtermelők csúcsértékű hőmérsékletét úgy kell beállítani, hogy a tároló vizét a megengedett értéknél magasabbra ne fűthessék.

 

A hagyományos hőtermelővel a tároló hőmérsékletét célszerű 45-50°C-on tartani. Ennél magasabb hőmérséklet esetén megnőnek a hővesztességek, és főleg kemény víz esetén erős vízkőkiválással kell számolni. 60°C feletti hőmérséklet esetén a forrázásveszély elkerülése érdekében termosztatikus keverőszelepet kell beépíteni, ez a vételezett melegvízhez a hideg ágból hidegvizet kever.

 

Melegvíztárolót csak temperált, fagyveszélytől mentes helyiségben szabad elhelyezni. Nem szabad például a tárolót szigeteletlen, fűtetlen padlástérbe telepíteni.

A két hőcserélős tárolóknak a felső hőcserélőjére kötött hagyományos hőtermelővel csak a felső térfogatát lehet felfűteni, az alsó részt csak a napkollektorok fűtik. A tároló fertőtlenítése miatt ugyanakkor célszerű a teljes tárlótérfogatot időszakonként 60°C fölé emelni. Ez elpusztítja például a langyos vízben megtelepedő legionella baktériumokat. Hagyományos hőtermelővel a kéthőcserélős tárolók teljes térfogata csak úgy fűthető fel, ha szivattyúval ellátott vezetéket építenek be, mely a fertőtlenítő felfűtéssel egy időben a tároló felső részéből a forró vizet visszakeringteti a hidegvíz csonkon keresztül a tároló alsó részébe.

 

A melegvíztárolók biztonsági szerelvényei

 

A melegvíztárolók bekötését csak megfelelő képesítéssel rendelkező szakember végezheti. Be kell tartania a tároló kezelési utasításában leírtakat, valamint a vonatkozó szabványokat.

 

A bekötés fontosabb szabályai:

 

A hidegvíz ágba a folyásirány sorrendjében be kell építeni:

 

·         elzáró szerelvényt,

·         nyomáscsökkentő szelepet (szükség esetén),

·         visszacsapó szelepet,

·         biztonsági szelepet (általában 2,5 bar nyitónyomású),

·         nyomásmérőt (300 literes térfogat felett), és

·         ürítő csapot.

 

Nagyon fontos, hogy a biztonsági szelep és a tároló között nem lehet elzáró szerelvény. A biztonsági szelep felfűtés közben üzemszerűen csöpögni fog, ezért gondoskodni kell a csöpögő víz elvezetéséről. A csöpögő vizet, látható helyen levő, tölcséren keresztül kell bevezetni a csatornahálózatba.

 

Tilos a biztonsági szelep csöpögő ágát rögzítetten bekötni, vagy leszűkíteni.

A biztonsági szelep szükséges mérete:

·           200 literes tárolóig: 1/2”

·         1000 literes tárolóig: 3/4”

 

A biztonsági szelep csöpögését megfelelő méretű, ivóvíz rendszerekben alkalmazható zárt tágulási tartály beépítésével ki lehet küszöbölni. A tágulási tartály azonban nem helyettesíti a biztonsági szelepet, annak beépítése minden esetben kötelező.

Melegvíztárolókban egy hőmérőt is el kell helyezni, a melegvíz kilépésének közelében.

Külső hőcserélők

Egyszerűbb használati-melegvíz készítő napkollektoros rendszerekben általában beépített, belső hőcserélős tárolókat alkalmaznak. A kollektorfelület meghatározza azt, hogy a belső hőcserélőnek mekkora felületűnek kell lennie. A tárolókba beépíthető hőcserélő nagysága azonban korlátozott. Nagyobb napkollektor-felület esetén általában már nem elegendő a tárolóba beépíthető hőcserélő, ilyenkor külső hőcserélőket kell alkalmazni. Külső hőcserélőt kell alkalmazni nagyobb puffertárolók, vagy medencék fűtése esetén is.

 

Külső hőcserélős napkollektoros rendszerekben nem csak a napkollektor köri fagyálló folyadékot, hanem a fűtött közeget is szivattyúval kell a hőcserélőn keresztül keringtetni. A mindkét köri kényszeráramlás, valamint a korlátlanul választható hőcserélőnagyság- és típus miatt a külső hőcserélős rendszereknél optimális, jól szabályozható hőcsere valósítható meg.

A hőcserélő egy kis térfogatú edény, melyben a két közeg egymástól elválasztva, általában egymással szemben, szűk, nagy felületű járatok között áramlik. Az esetek többségében rozsdamentes acélból készült lemezes hőcserélőket használnak. Ezek készülnek forrasztott vagy szerelhető kivitelben. A forrasztott kivitel olcsóbb, de csak vegyszeres átmosással tisztítható. A szerelhető kivitel lemezei gumitömítéssel vannak elválasztva egymástól, és csavarok szorítják azokat össze, ezért tisztítás esetén szétszerelhetők.

 

A hőcserélők kiválasztása

 

A hőcserélőket hőtechnikai és áramlástani szempontok alapján kell kiválasztani. Hőtechnikailag a hőcserélők feladata az, hogy a napkollektorok által hasznosított hőmennyiséget a primer és a szekunder közeg viszonylag kis hőmérsékletkülönbsége mellett legyen képes átadni. Áramlástechnikailag pedig, a szükséges térfogatáramok mellett a hőcserélők ellenállása nem lehet nagyobb annál, mint amit a keringető szivattyú emelőmagassága a teljes rendszer nyomásveszteségét figyelembe véve biztosítani tud. A hőcserélőket általában a gyártók által rendelkezésre bocsátott számítógépes programokkal lehet méretezni. Csak olyan program használható, ahol a primer köri közegként beállítható a napkollektorokban alkalmazott propilén-glikol fagyálló folyadék. Víz-víz közegre elvégzett méretezések - a fagyálló folyadék víztől eltérő fajhő és viszkozitás értékei miatt - nem adnak helyes eredményeket.

 

A méretezés paramétereinek beállításához meg kell határozni a hőcserélővel átvihető teljesítményt, ami a napkollektorok teljesítményével egyezik meg.

Hőcserélők esetében az áramló közegek hőmérséklete, így azok hőmérsékletkülönbsége is a falfelület mentén változik. Ezért bevezették a hőcserére jellemző logaritmikus hőmérsékletkülönbség fogalmát. A napkollektoros rendszerek hőcserélőinek számítógépes méretezésekor a cél minél alacsonyabb, általában 5-10°C közötti logaritmikus hőmérsékletkülönbség elérése.

Azonos hőáramot alacsonyabb logaritmikus hőmérsékletkülönbség mellett csak nagyobb, ezért drágább hőcserélővel lehet átadni. Így a hőcserélők kiválasztása hőtechnikai méretezés mellett költségoptimalizálást is igényel.

Áramlástani szempontból a hőcserélőket általában úgy választják ki, hogy a nyomásveszteségük 20 kPa alatt legyen. Különösen ügyelni kell a medencék vízforgató körébe épített hőcserélők kiválasztásánál, mivel itt igen nagy térfogatáramok fordulnak elő. Ezért medencék hőcserélőjeként általában nem lemezes, hanem a köpenytér oldalon kis ellenállású, csőköteges hőcserélőket alkalmaznak.

Napkollektoros rendszerek szabályozása

A napkollektoros rendszerekben alkalmazott szabályozók feladata, hogy csak akkor indítsák el a napkollektoros fűtést, ha a kollektorok hőmérséklete magasabb a fűteni kívánt közeg hőmérsékleténél. Ezért a legegyszerűbb szabályozó egy hőmérsékletkülönbség kapcsoló, mely egy-egy érzékelővel méri a napkollektorok, és a fűtött tároló hőmérsékletét. A szabályozón beállított hőmérsékletkülönbség elérése esetén a szabályozóban lévő relé meghúz, és ez általában elindítja a napkollektor köri keringető szivattyút. A bekapcsolási hőmérséklet-különbség általában 5-20°C. Ezen kívül a szabályozón általában beállítható a tárolók csúcsértékű hőmérséklete is. Ha a napkollektorok felfűtötték a tárolót a beállított legnagyobb hőmérsékletre, akkor a szabályozó kikapcsolja a napkollektor köri szivattyút akkor is, ha a bekapcsoláshoz szükséges hőmérsékletkülönbség továbbra is fennáll.

 

Bonyolultabb, többtárolós napkollektoros rendszerek működését irányító szabályozók a napkollektorok mellett valamennyi fűtött tároló hőmérsékletét mérik, és tárolóként, az egytárolós automatika működésével megegyezően vizsgálják az adott tároló fűtésének bekapcsolási feltételeit. A tárolók napkollektoros fűtése előnykapcsolás alapján történik. Általában a magasabb hőmérsékletű tároló fűtése van előnykapcsolás szerint előrébb rangsorolva (pl. első helyen a melegvíztároló, második helyen a fűtési puffertároló, harmadik helyen a medence). Többtárolós rendszerek esetén a szabályozó a napkollektor köri szivattyún kívül a körök közötti átváltást végző motoros váltószelepeket, vagy a tároló körönként külön-külön beépített szivattyúkat is vezérli.

 

A napkollektoros rendszerekben alkalmazható szabályozóknak minőség, szabályozási tulajdonságok és ár szempontjából több változata létezik.

 

·         Analóg szabályozók. Ezeket egyszerűbb, főleg használati-melegvíz készítő, vagy medencefűtő rendszereknél alkalmazzák. Az analóg szabályozók tárlónként egy relé kimenettel rendelkeznek, melyekkel szivattyúkat vagy váltószelepeket lehet kapcsolni.

·         Mikroprocesszoros szabályozók. Ezeknél, a szabályozóknál a processzor összetettebb szabályozási lehetőségek, megvalósítását teszi lehetővé. Ilyen lehet például többtárolós rendszereknél az előnykapcsolás szerint hátrább sorolt tároló fűtése esetén a napkollektor köri szivattyú időszakonkénti rövid idejű kikapcsolása, mely lehetővé teszi a napkollektorok felmelegedését, és így az előrébb sorolt tároló fűtését.

·         A mikroprocesszoros szabályozók többnyire alkalmasak a szivattyúk hőmérséklet-különbség függvényében történő fordulatszám-szabályozására is. Így gyengébb napsütés esetén alacsonyabb, erősebb napsütés esetén magasabb szivattyú fordulatszám valósítható meg.

·         Mikroprocesszoros, szabadon programozható szabályozók. Ezek a szabályozók a napkollektoros rendszer mellett, az egész épületgépészeti rendszer egyedi, integrált szabályozására alkalmasak.


Mikroprocesszoros szabályozókhoz általában hozzákapcsolhatók hőmennyiségmérők, mérés-adatgyűjtők vagy napsugárzás-érzékelők is, melyek segítségével a napkollektoros rendszer üzeme figyelemmel kísérhető, regisztrálható.

 

Az érzékelők elhelyezése

 

A szabályozóknak általában tartozéka a szabályozási feladat megvalósításához szükséges számú érzékelő. Ezek többnyire ellenállás-érzékelők, melyek hőmérséklet-változás hatására változtatják ellenállásukat. Nagyon fontos, hogy az érzékelőket olyan helyen, és olyan módon helyezzük el, hogy azok valóban a mérni kívánt hőmérsékletet érzékeljék. A napkollektoroknál általában az abszorberlemez hőmérsékletét célszerű mérni a kilépő csonk közelében.

Tapasztalatok szerint, ha a napkollektor érzékelőt a kilépő csővezetékre teszik, akkor az csak a keringés megindulása után mér kielégítő pontossággal, de a napkollektorok felmelegedését csak késéssel érzékeli.

Melegvíztárolók érzékelőjét általában a hőcserélő övezetében, kb. a hőcserélők felének magasságában, kell elhelyezni. A tárolókon többnyire található erre a célra kiképzett hüvely, vagy csonk.

 

Az érzékelőket általában 2x1mm2-es szigetelt, sodrott réz vezetékkel kell bekötni. A kötéseket, toldásokat célszerű forrasztással végezni. Külső térben, pl. a napkollektor érzékelő bekötéséhez csak UV-álló kábel használható. A vezetéket védőcsőben, vagy egyszerűbb esetben a csővezeték hőszigeteléséhez kábel-kötegelővel rögzítve lehet vezetni. A vezeték nem érhet hozzá a rézcsőhöz. A vezetéket nem célszerű az erősáramú vezetékekkel együtt vezetni. Az érzékelőket a hüvelybe behelyezés előtt a jó hőátadás érdekében hővezető pasztával kell bekenni.

 

A napkollektorokat lehetőség szerint azonos dőlésszöggel és tájolással kell elhelyezni. Nem célszerű pl. arra törekedni, hogy a napkollektorok egy csoportja a keleti, másik csoportja a nyugati, harmadik csoportjuk pedig esetleg a déli tetőfelületre kerüljön. Ha ez valami miatt mégis elkerülhetetlen, akkor a különböző elhelyezkedésű napkollektor-csoportokat hidraulikailag és szabályozástechnikailag is külön kell választani. Ez a rendszer bonyolultságának lényeges, és indokolatlan növekedéséhez vezet.

 

Általánosan elmondható, hogy a napkollektoros rendszerek megvalósításánál törekedni kell az egyszerűségre, az átláthatóságra. Minden egyes újabb szivattyú, keverő- vagy váltószelep és szabályozó egyben újabb hibaforrást is jelent.

 

Fontos, hogy a megrendelő is megértse a rendszer működését, mert csak úgy tudja ellenőrizni a helyes üzemelést, és maga is elvégezni időszakonként a beállításokat, ha szükséges.

 

A hőmérsékletérzékelő elhelyezése

A hőmérsékletérzékelő elhelyezése

 

Csővezeték rendszer

A napkollektoros rendszerekben alkalmazott napkollektor-köri (primer) csővezetékeknek meg kell felelniük a 180°C-os maximális hőmérséklet és a 3 bar maximális nyomás által támasztott követelményeknek.

Kollektor-köri csővezetékként az épületgépészetben általánosan alkalmazott csövek közül a vörösrézcső, a horganyzott acélcső, nem horganyzott ún. “fekete” acélcső, újabban a rozsdamentes acél gégecső és az alumíniumcső használható. Előnyösebb szerelhetősége miatt azonban a vörösrézcső, a horganyzott acélcső, de leginkább az alumíniumcső és a rozsdamentes acél gégecső alkalmazását javasoljuk. Ez utóbbiak élattartama hosszabb, könnyen megmunkálhatóak, könnyen beszerelhetőek, áramlási ellenállásuk kicsi, így tiszta belső részükben lerakódás nem képeződik.

A vörösrézcső használata esetén, a réz agresszivitása miatt, nem ajánlott közös rendszerben a horganyzott acélcső vagy az alumíniumcső alkalmazása.

Csőkötésként elsősorban a lágyforrasztást, a hollandi vagy a roppantásos kötést javasoljuk. Elméletileg (főleg a napkollektorok közvetlen közelében) a magas hőmérséklet miatt már csak keményforrasztást lehetne alkalmazni, ezért inkább a hollandi, vagy a roppantásos (présfiting) kötést javasoljuk. Tapasztalatunk szerint a lágyforrasztás megbízható kötést eredményez a napkollektortól távolabbi szakaszokon. Keményforrasztás esetén a rézcsövet vörös izzásig kell melegíteni, ami a cső kilágyulását, túlhevítés esetén tönkremenetelét eredményezi.

Csőkötésként alkalmazható, főleg az alumínium csövek esetében, az újabban egyre jobban terjedő présfitting megoldás. Ügyelni kell azonban arra, hogy csak olyan gumi tömítőgyűrűt szabad használni, ami magas hőmérsékleten is alkalmazható.

Fontos: Az alumíniumcső használata más anyagok helyett, nagy megtakarítást jelent a beruházási költségek mérséklésében, könnyen szerelhető, ráadásul hosszabb üzemi időt biztosít az agresszív anyagú rézcsővel és rozsdásodásnak kitett acélcsővel szemben.

 


A csővezeték méretének meghatározása

 

A napkollektor köri csővezeték méretének meghatározása ugyanúgy történik, mint az egyéb épületgépészeti rendszerek csővezetékeinek méretezése. A lényeges különbség, hogy a napkollektorokban fagyálló folyadék kering, melynek a víztől eltérő a viszkozitása.

 

A csővezeték szerelésének szempontjai

 

·        Alumínium vagy vörösréz csővezeték alkalmazásakor fokozottan kell ügyelni a hőtágulások biztosítására. Az alumínium hőtágulása 100%-al, a réz hőtágulása 50%-al, nagyobb az acélcső hőtágulásánál. Egy méter cső tágulása 1°C hőmérsékletváltozás esetén az átmérő és falvastagság méretétől függetlenül, 0,024 mm az alumínium és 0,017 mm a réz esetében.

·        A csővezeték rögzítésére gumibetétes csőbilincseket kell alkalmazni. A rézcsőhöz általánosan használt műanyag, pattintós csőbilincsek a nagy hőmérséklet miatt kollektoros rendszerekben nem minden esetben használhatóak.

·        Több kollektor-csoport esetén ezeket párhuzamosan kell kapcsolni. Ügyelni kell arra, hogy minden napkollektor-csoport térfogatárama azonos legyen. Ez ún. Tichelman kapcsolással valósítható meg. A kapcsolás elve, hogy minden napkollektor esetén egyforma hosszúak az áramlási utak, és így azonosak az áramlási vesztességek.

·        A szekunder (nem napkollektor köri) csővezeték anyagának meghatározásakor figyelembe kell venni a csatlakozó rendszer vezetékeinek anyagát is. Réz vezeték esetén be kell tartani az ún. folyásirány szabályt. Ez azt jelenti, hogy áramlási irányban haladva rézből készült csővezetéket csak a horganyzott acélból, alumíniumból, vagy más anyagból készült csővezeték-szakasz után szabad beépíteni. Ellenkező esetben, a vízben oldott réz átkerülve a más anyagból készült szakaszba lyukrozsdásodást okozhat.

 

A napkollektor-csoport párhuzamos kötése

A napkollektor-csoport párhuzamos kötése

A csővezetékek hőszigetelése

A napkollektor köri csővezetékeket a hővesztességek csökkentése érdekében teljes terjedelmükben hőszigetelni kell. A hőszigetelő anyagoknak meg kell felelniük a napkollektorok üresjárata utáni induláskor fellépő igen magas, 150°C fölötti hőmérsékletnek.

A külső térben vezetett csővezetékek hőszigetelésének bírnia kell a napsugárzást (UV-álló) és a nedvességet (esőt, havazást).


Kollektor köri csővezetékek hőszigetelésére használhatók üveg- vagy kőzetgyapot anyagú, alufóliával bevont (kasírozott) csőhéjak, vagy olyan szintetikus gumi anyagú csőhéjak, melyek legalább 150°C-ot, rövid ideig 175°C-ot károsodás nélkül elviselnek. Ha a napkollektor köri csővezeték meleg ágát hagyományos, általánosan használt habosított csőhéjjal, szigetelik, akkor az előbb vagy utóbb össze fog zsugorodni, helyenként le fog olvadni.

Külső térben csak az UV sugárzásnak is ellenálló szigetelést lehet használni, és az ilyen szigeteléseket is célszerű UV-álló festékkel lefesteni, vagy keményhéjalással ellátni. A gumi anyagú szigeteléseket általában a madarak is károsítják, csipegetik.

Hőszigetelt csövek hővesztessége a szállított közeg és a környezeti levegő hőfokkülönbsége, valamint a szigetelésvastagság és a csőátmérő viszonyának függvénye.

 

 

A javasolt hőszigetelés-vastagságok:

 

Csővezeték mérete és a hőszigetelés vastagsága

·         22-ig                      20 mm

·         28-35-ig                 30 mm

·         42-54-ig                 az átmérővel azonos

Légtelenítő elemek

A hőhordozó folyadék tökéletes keringtetésének feltétele a hidraulikus rendszerbe feltöltéskor bekerülő levegő és a folyadékból a felmelegedés hatására kiváló oxigén eltávolítása.

Légtelenítés céljára alkalmazható kézi légtelenítő csap, légtelenítő-edény kézi ürítő csappal, és önműködő vagy pedig abszorbciós légtelenítő. Csak olyan légtelenítő elem alkalmazható, ami a propilén-glikol fagyálló folyadéknak ellenáll.

Valamilyen légtelenítési lehetőségnek a rendszer minden magas pontján (15. ábra) kell lennie, illetve a csővezetéket úgy kell kialakítani, hogy azok száma és hossza minél kevesebb legyen, a levegő eljuttasson a légtelenítő irányába. Légtelenítés szempontjából a legcélszerűbb megoldás az lenne, ha a napkollektorokból kilépő csővezeték legmagasabb pontjára lehetne elhelyezni automatalégtelenítőt, ezek azonban a fellépő magas hőmérséklet miatt itt nem alkalmazhatók.

 

A napkollektor-mező magas pontján kézi légtelenítő, vagy légtelenítő edény beépítését javasoljuk, a tető alatti kivezetéssel és elzárócsappal. Még jobb, ha a légtelenítő vezetéket elvezetik a rendszer töltésének helyére. Ebben az esetben egyszerű a feltöltés, légtelenítés, az üzemi nyomás beállítása, mert mindez egy helyről elvégezhető. Légtelenítő vezetéknek 6x1mm-es lágy vörösrézcső alkalmazható.

 

Abszorbciós vagy önműködő légtelenítőt a hőcserélő és a keringető szivattyú utáni hideg ágba, könnyen elérhető helyre kell beépíteni. Az automatalégtelenítők akkor légtelenítenek a leghatékonyabban, ha T-idommal hosszabb vízszintes csővezeték szakaszba építik őket, ahol a levegőkavarodás nélkül, a csővezeték felső részén össze tud gyűlni. 

 

A napkollektorok ferde tetőre szerelése

A napkollektorok ferde tetőre szerelése, légtelenítése

 

Nagyobb rendszereknél a hatékonyabb légtelenítést eredményező légtelenítő edényt vagy abszorbciós légtelenítőt kell alkalmazni. Az abszorbciós légtelenítő zárt, hengeres edény, amibe olyan fémhálót helyeznek, mely megkavarja a rajta átáramló folyadékot, és így az oldott oxigén könnyebben kiválik.

Keringető szivattyúk

A keringető szivattyú biztosítja a hőhordozó közeg szállítását a napkollektor és a hőcserélő között. A szivattyút az épületgépészetben szokásos módon, a szükséges térfogatáram és a teljes rendszere számított nyomásveszteség alapján kell kiválasztani.

 

Kollektorok alkalmazása esetén a rendszer jó hatásfoka érdekében napkollektoronként a hőhordozó folyadék alábbi térfogatáramát kell biztosítani:

·         Az ajánlott térfogatáram:          60 liter/óra. napkollektor

·         A legnagyobb térfogatáram:    100 liter/óra. napkollektor

 

A napkollektorokat hidraulikailag párhuzamosan kell kapcsolni. A rendszer teljes térfogatárama a napkollektorok darabszámának és a napkollektoronként biztosítani kívánt térfogatáramnak a szorzata. A napkollektorok nyomásvesztesége 10 db napkollektor összekapcsolásáig tetszőleges napkollektorszám esetén ~3 kPa.

 

A szivattyú kiválasztásánál figyelemmel kell lenni arra, hogy a szivattyúkatalógusok a jelleggörbéket általában víz közegre adják meg, napkollektoros rendszer esetén pedig a keringetett közeg monopropilén-glikol vizes oldat, melynek viszkozitása a víztől eltérő.

 

Az alkalmazott (-24°C-ra kevert) szuper-zöld fagyálló folyadék adatai 50°C-on:

·         Sűrűsége:                         ρ = 1,04 g/cm3

·         Dinamikai viszkozitása:        η = 8,5 - 8,7 cPs

 

A fagyálló folyadék viszkozitása a hőmérséklet csökkenésével meredeken növekszik, 0°C-on már 10 mPa. A víz közeghez képest magasabb viszkozitási érték a térfogatáram kb. 20%-os, illetve a szállítómagasság kb. 10%-os csökkenését eredményezi.

A szivattyú gyártmányának kiválasztásánál meg kell győződni arról, hogy az alkalmazott szerkezeti elemek (pl. tömítés, járókerék) ellenállnak-e a propilén-glikolnak.

A napenergia-hasznosító rendszerekben elsősorban Grundfos, vagy Wilo szivattyúk használatát javasoljuk. Ezek a szivattyúk megbízhatóak, szerelésük egyszerű, teljesítményük több fokozatban szabályozható.

 

Az ajánlott típusok (Grundfos):

·         UPS 25-40 ~6 db napkollektorig,

·         UPS 25-50 ~10 db napkollektorig,

·         UPS 25-60 ~20 db napkollektorig,

·         UPS 25-80 ~40 db napkollektorig.

 

Mivel a szivattyúk teljesítménye általában meghaladja az optimális térfogatáram által megkívánt értéket, ezért a szivattyú körébe szabályozószelepet kell beépíteni. Erre a célra golyóscsap nem alkalmazható.

 

Nagyobb napkollektor darabszám vagy hosszabb csővezeték esetén a szivattyú típusát számítással kell meghatározni.

A szivattyúk álló helyzetben nem akadályozzák meg az áramlást, ezért napkollektoros rendszerekbe visszacsapó-szelepet kell beépíteni. Ezzel megakadályozható az esetleg kialakuló nem kívánt, fordított irányú gravitációs keringés, mely éjszaka, vagy napsütésmentes időben a tárolótartály vizének napkollektorokon keresztüli lehűlését eredményezné.

 

A használati melegvíz körben alkalmazott szivattyúknak meg kell felelniük az ivóvízvezetékek esetében előírt követelményeknek. Ezeknek a fűtési keringető szivattyúk többsége nem felel meg. Alkalmazhatók például a bronzházas Grundfos B sorozatjelű szivattyúk.

 

A szivattyúkat általában vízszintes forgástengellyel kell beépíteni. Hollandi csavarzat helyett szivattyúelzáró golyóscsapok alkalmazását javasoljuk, mert meghibásodás esetén így a szivattyú a rendszer leengedése és újratöltése nélkül (mely a fagyálló folyadék miatt nehézkesebb, mint vizes rendszereknél) kiszerelhető.

Motoros zónaszelepek

A motoros zónaszelepek napkollektoros rendszerekben nyitásra, zárásra vagy irányváltásra szolgálnak. Az egyútú (kétjáratú) kivitelek nyitásra-zárásra, a kétútú (háromjáratú) kivitelek pedig irányváltásra használhatók.

A motoros szelepek (pl. Honeywell VC típus) gyorsabb működésűek, a motoros golyóscsapok (pl. Modulo típus) lassabb működésűek, de kisebb a nyomásveszteségük.

Fagyálló hőátadó folyadék

A napkollektoros rendszereket minden esetben fagyálló hőátadó folyadékkal kell feltölteni. Erre a célra csak propilén-glikol, vagy monopropilén-glikol alapú, nem mérgező fagyálló folyadék használható. Az általánosan (pl. autókban) használt etilén-glikol mérgező, ezért napkollektoros körben, ahol a hőcserélő esetleges kilyukadása következtében a fagyálló az ivóvíz hálózatba juthat, nem alkalmazható.

A propilén-glikol fagyálló folyadékot tömény sűrítmény formájában árusítják. A fagyálló csak hígítva használható. A javasolt hígítás: 40-45% fagyálló, 55-60% víz. Ilyen hígítás esetén a fagyáspont: -22 és -26°C között. 45% térfogatszázaléknál több fagyálló alkalmazása nem javasolt, mert az megnöveli a keringető szivattyúk teljesítményfelvételét, és így tönkremenetelüket okozza.

A monopropilén-glikol vizes oldata szintén megtalálható a kereskedelmi forgalomban Fernox Solar S1 márkanéven 10, 20 és 25 literes kiszerelésben. Előnye, hogy védetté teszi a szolár rendszer elemeit a korrózióval szemben.

 

Megrendelő figyelmét fel kell hívni arra, hogy a fagyálló folyadék fagyáspontját minden évben, a fagyásveszélyes időszak előtt ellenőrizze.